Headspace-Solid Phase Microextraction Approach for Dimethylsulfoniopropionate Quantification in Solanum lycopersicum Plants Subjected to Water Stress
نویسندگان
چکیده
Dimethylsulfoniopropionate (DMSP) and dimethyl sulphide (DMS) are compounds found mainly in marine phytoplankton and in some halophytic plants. DMS is a globally important biogenic volatile in regulating of global sulfur cycle and planetary albedo, whereas DMSP is involved in the maintenance of plant-environment homeostasis. Plants emit minute amounts of DMS compared to marine phytoplankton and there is a need for hypersensitive analytic techniques to enable its quantification in plants. Solid Phase Micro Extraction from Head Space (HS-SPME) is a simple, rapid, solvent-free and cost-effective extraction mode, which can be easily hyphenated with GC-MS for the analysis of volatile organic compounds. Using tomato (Solanum lycopersicum) plants subjected to water stress as a model system, we standardized a sensitive and accurate protocol for detecting and quantifying DMSP pool sizes, and potential DMS emissions, in cryoextracted leaves. The method relies on the determination of DMS free and from DMSP pools before and after the alkaline hydrolysis via Headspace-Solid Phase Micro Extraction-Gas Chromatography-Mass Spectrometry (HS-SPME-GC-MS). We found a significant (2.5 time) increase of DMSP content in water-stressed leaves reflecting clear stress to the photosynthetic apparatus. We hypothesize that increased DMSP, and in turn DMS, in water-stressed leaves are produced by carbon sources other than direct photosynthesis, and function to protect plants either osmotically or as antioxidants. Finally, our results suggest that SPME is a powerful and suitable technique for the detection and quantification of biogenic gasses in trace amounts.
منابع مشابه
Application of Polypyrrole Coated Stainless-Steel Wire to the Headspace Solid-Phase Microextraction of Aliphatic Amines
The electrochemical coating technique was used for the preparation of a polypyrrole coating on a stainless-steel wire, and applied as a fibre for solid phase microextraction (SPME). The polypyrrole fibre was employed for analyzing four volatile aliphatic amines (ethylamine, propylamine, butylamine and pentylamine) in water by headspace SPME using gas chromatography-flame ionization detection (G...
متن کاملOrdered nanoporous carbon (CMK-3) coated fiber for solid-phase microextraction of benzene and chlorobenzenes in water samples
Nanoporous carbons (CMK-3) were prepared and have been used as a fiber coating for headspace solid phase microextraction (HS-SPME). The prepared materials were characterized by Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and N2 adsorption/desorption isotherms. The efficiency of the fiber was evaluated using a gas chromatography (GC) system for the extraction of benzene (B) and c...
متن کاملSimultaneous Determination of Disinfection By-products in Water Samples from Advanced Membrane Treatments by Headspace Solid Phase Microextraction and Gas Chromatography-Mass Spectrometry
A headspace-solid phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS) method has been developed for the simultaneously determination of 20 disinfection by-products (DBPs) in water samples from reverse osmosis (RO) membranes. Selected compounds belong to different families including: trihalomethanes (THMs), halogenated acetonitriles (HANs), halogenated nitromethanes ...
متن کاملSolid-phase microextraction and headspace solid-phase microextraction for the determination of polychlorinated biphenyls in water samples.
A solid-phase microextraction (SPME) method has been developed for the quantification of polychlorinated biphenyls (PCBs) in water samples. Parameters such as sampling time, volume of water, volume of headspace, temperature, addition of salts, and agitation of the sample were studied. Because the time for reaching equilibrium between phases takes several hours or days, depending on the experime...
متن کاملOrdered Nanoporous Carbon Based Solid-Phase Microextraction for the Analysis of Nitroaromatic Compounds in Aqueous Samples
In this paper, the possibility of using a new ordered nanoporous carbon as a new fiber in headspace solid phase microextraction (HS-SPME) to determine of mononitrotoluenes (MNTs) in waste water is demonstrated. The structural order and textural properties of the ordered nanoporous carbon were studied by X Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) images and nitrogen adsorpti...
متن کامل